opportunity

Neutron scattering and simulations reveal the dynamics of protein complexes

- but this method is practically inaccessible to most bio scientists
challenge

Andreas Haahr Larsen
Department of Neuroscience
ESS DMSC meets DTU and UCPH

Membrane protein structural complexity:

- X-ray crystallography
- Electron microscopy
- Small-angle X-ray scattering (SAXS)
- Small-angle neutron scattering (SANS)

CorA magnesium transporter

Intrinsically disordered proteins or regions (IDPs or IDRs)

opportunity

Molecular Dynamics Simulation of GluA2 receptor

- Atomic details
- Dynamics
- Needs verification

Strategies for obtaining consistency

1) $\mathrm{SAXS} / \mathrm{SANS}$ in MD as energy term
2) Unbiased MD -> reweight trajectory
[Change the simulation as little as possible]

AND

 Good models to calculate SAXS/SANS from MD

- Low resolution
- Time/ensemble average
- Indirect: needs a model
- Many possible solutions!

opportuníty

Molecular Dynamics Simulation of GluA2 receptor

- Atomic details
- Dynamics
- Needs verification

Towards consistency

1) $\mathrm{SAXS} / \mathrm{SANS}$ in MD as energy term
2) Unbiased MD -> reweight trajectory
[Change the simulation as little as possible]

Reweighted ensemble qualitatively consistent with EM
complex setup of MD simulations lack of GUI
File Edit View Search Terminal Help
Setting up tree (1.7.0-5)
Processing triggers for man-db (2.8.3-2)
mark@linux-desktop:/tmp/tutorial\$ tree
j- another

- combined.txt
__ dir1
 - dir3
test_1.txt
test_2.txt
test_2.txt
dir4
ir4
Lir5 dir6
older
output.txt
8 directories, 5 files
mark@linux-desktop:/tmp/tutorial\$

```
- Making MD+SAXS/SANS accessible to more bioscientists
- Ensure validity of results

\section*{Example of solution}


Home Help About Contact Links
```

