The Data Reduction, Analysis, and Modelling group

Our role, activities and opportunities for collaborations

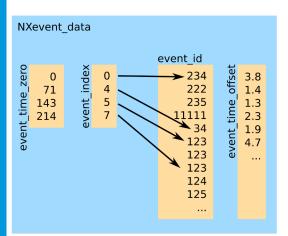
PRESENTED BY Mads Bertelsen 2023-10-05

The Data Reduction, Analysis, and Modelling group

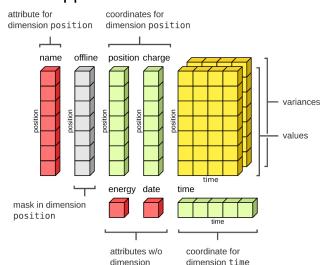
Our role, activities and opportunities for collaborations

PRESENTED BY Mads Bertelsen 2023-10-05

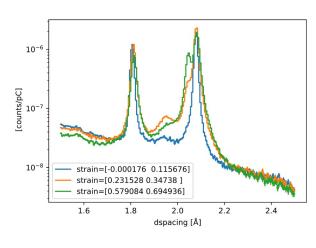
Data Reduction: convert detector data to physical data


(pixel position, detection time)

 $(\lambda, \text{ energy}, \theta, \text{ d-spacing}, \text{ intensity}, \dots)$

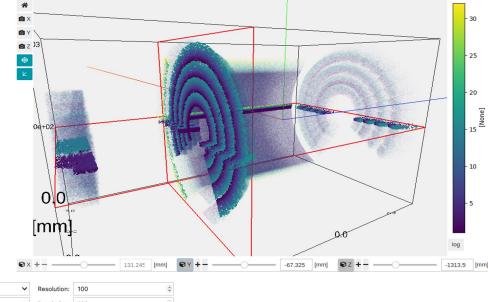


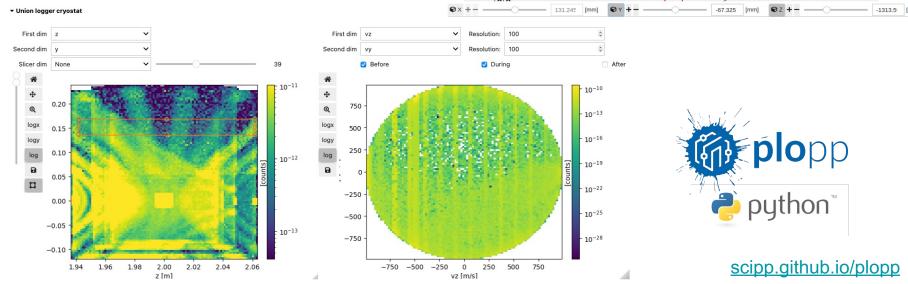
Event data in NeXus file

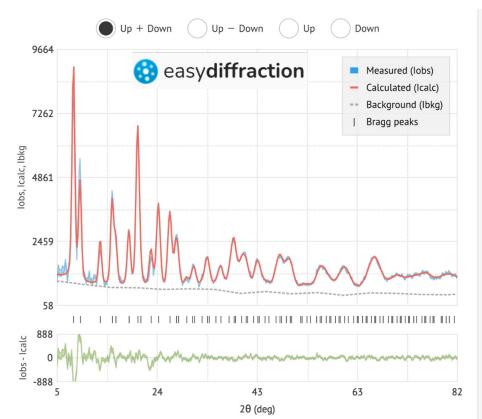


? python™

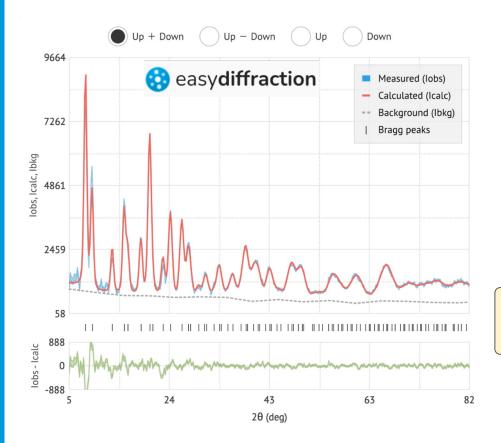
Scipp flexible data structure


Output with physical units




Data Visualization

Interactive data visualization in Jupyter notebooks



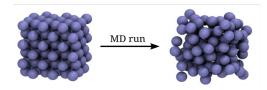
Data Analysis: interpret and understand physical data

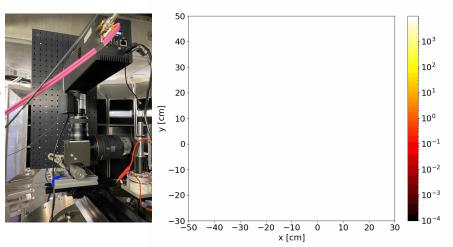
Parameters							
No.	Lat	el	Value	Error	Fit		
1	(*)	Ho2Ti2O7 cell length_a	10.2659 Å	0.0009	✓		
2	(Ho2Ti2O7 atom_site Ho occupancy	1.0000 frac				
3	(Ho2Ti2O7 atom_site Ho U_iso_or_equiv	0.0000 Å^2				
4	\(\partial\)	Ho2Ti2O7 atom_site Ho susceptibility_chi_11	3.8262 T ⁻¹	0.0222	✓		
5	**	Ho2Ti2O7 atom_site Ho susceptibility_chi_12	3.7380 T ⁻¹	0.0154	✓		
6	*	Ho2Ti2O7 atom_site Ti occupancy	1.0000 frac				
7	*	Ho2Ti2O7 atom_site Ti U_iso_or_equiv	0.0000 Å^2				
8	**	Ho2Ti2O7 atom_site 01 fract_x	0.3286 frac				
9	*	Ho2Ti2O7 atom_site O1 occupancy	1.0000 frac				
10	\(\partial\)	Ho2Ti2O7 atom_site O1 U_iso_or_equiv	0.0000 Å^2				
11	\(\partial\)	Ho2Ti2O7 atom_site O2 occupancy	1.0000 frac				
12	\(\partial\)	Ho2Ti2O7 atom_site O2 U_iso_or_equiv	0.0000 Å ²				
8.2	127			- [12.3191		
Start fitting							

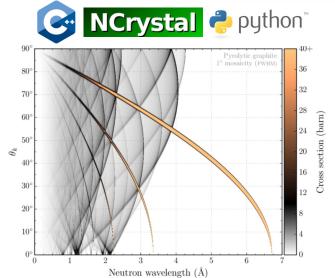
Data Analysis: interpret and understand physical data

- Create strategy for analysis software for all planned instruments
- Involvement in neutron analysis software projects
- We actively work on ~20 open-source projects (our own initiatives, collaborative developments)

<u>EasyDiffraction</u>, <u>EasyReflectometry</u>, <u>Brille</u>, SasView, SpinW, CrysFML, <u>CrysPy</u>




Modelling


python

McStas

- Instrument simulation:
 - McStas/McXtrace development
 - Instrument performance
 - Simulation of experiments
- Neutron transport:
 - Ncrystal development
- Atomistic modelling:
 - Use of DFT, MD, spin dynamics calculations for QENS and INS

Topic ideas for student projects

Rationale

Students can use newly developed capabilities for larger projects than the developers would have time for, with supervision from the developers. We see how potential users would use our software. Important feedback!

Topic ideas

- Data science: processing / manipulating / exploring large (sparse?) datasets
- Statistical analysis of experimental errors and propagations (Bayesian, correlations)
- Creating graphical user interfaces / Interactive data visualization
- User experience analysis / improvement of scientific software
- Applying machine learning to neutron science data reduction and/or analysis
- HPC (GPU computing) projects for MD & MC simulations

Examples of student projects

Student	Uni.	Project		
Martin Olsen	KU	Coating optimization in neutron guides Cone and mesh geometry in McStas Union components		
Petroula Karakosta	KU	Simulation of BIFROST magnet and machine learning (talk later)		
Estrid Buhl Naver	DTU	Simulation of multilayer sample with refraction and reflections		
Domenico Battaglia	DTU	Simulation of battery experiment at SENJU J-PARC		

Recently started offering students desks at DMSC which have greatly improved collaboration

Thanks for your attention

PRESENTED BY Mads Bertelsen 2023-10-05

